Establishment of topographic circuit zones in the cerebellum of scrambler mutant mice

نویسندگان

  • Stacey L. Reeber
  • Courtney A. Loeschel
  • Amanda Franklin
  • Roy V. Sillitoe
چکیده

The cerebellum is organized into zonal circuits that are thought to regulate ongoing motor behavior. Recent studies suggest that neuronal birthdates, gene expression patterning, and apoptosis control zone formation. Importantly, developing Purkinje cell zones are thought to provide the framework upon which afferent circuitry is organized. Yet, it is not clear whether altering the final placement of Purkinje cells affects the assembly of circuits into topographic zones. To gain insight into this problem, we examined zonal connectivity in scrambler mice; spontaneous mutants that have severe Purkinje cell ectopia due to the loss of reelin-disabled1 signaling. We used immunohistochemistry and neural tracing to determine whether displacement of Purkinje cell zones into ectopic positions triggers defects in zonal connectivity within sensory-motor circuits. Despite the abnormal placement of more than 95% of Purkinje cells in scrambler mice, the complementary relationship between molecularly distinct Purkinje cell zones is maintained, and consequently, afferents are targeted into topographic circuits. These data suggest that although loss of disabled1 distorts the Purkinje cell map, its absence does not obstruct the formation of zonal circuits. These findings support the hypothesis that Purkinje cell zones play an essential role in establishing afferent topography.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cerebellar disorganization characteristic of reeler in scrambler mutant mice despite presence of reelin.

Analysis of the molecular basis of neuronal migration in the mammalian CNS relies critically on the discovery and identification of genetic mutations that affect this process. Here, we report the detailed cerebellar phenotype caused by a new autosomal recessive neurological mouse mutation, scrambler (gene symbol scm). The scrambler mutation results in ataxic mice that exhibit several neuroanato...

متن کامل

TBR2-immunopsitive unipolar brush cells are associated with ectopic zebrin II-immunoreactive Purkinje cell clusters in the cerebellum of scrambler mice

Unipolar brush cells (UBCs) are excitatory interneurons with their somata located in the granular layer. Recently, T-brain factor 2 (Tbr2) was shown to be expressed in a subset of UBCs in mouse cerebellum. Scrambler mice exhibit severe cerebellum abnormalities, including the failure of embryonic Purkinje cell dispersal and a complete absence of foliation due to a mutation in the disabled-1 adap...

متن کامل

The community effect and Purkinje cell migration in the cerebellar cortex: analysis of scrambler chimeric mice.

The Disabled-1 protein in mouse is known to be an intercellular signaling component of the Reelin molecular pathway that subserves neuronal migration in several structures in the brain and spinal cord. The scrambler mutant mouse, which is phenotypically identical to the reeler mouse, is due to a mutation in the disabled-1 gene (Howell et al., 1997; Sheldon et al., 1997). The Purkinje cells of t...

متن کامل

Architecture and development of olivocerebellar circuit topography

The cerebellum has a simple tri-laminar structure that is comprised of relatively few cell types. Yet, its internal micro-circuitry is anatomically, biochemically, and functionally complex. The most striking feature of cerebellar circuit complexity is its compartmentalized topography. Each cell type within the cerebellar cortex is organized into an exquisite map; molecular expression patterns, ...

متن کامل

Migration defects of cdk5(-/-) neurons in the developing cerebellum is cell autonomous.

Cyclin-dependent kinase 5 (Cdk5) is a member of the family of cell cycle-related kinases. Previous neuropathological analysis of cdk5(-/-) mice showed significant changes in CNS development in regions from cerebral cortex to brainstem. Among the defects in these animals, a disruption of the normal pattern of cell migrations in cerebellum was particularly apparent, including a pronounced abnorma...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2013